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Abstract A numerical procedure for finding the sparsest and densest realization of
a given reaction network is proposed in this paper. The problem is formulated and
solved in the framework of mixed integer linear programming (MILP) where the con-
tinuous optimization variables are the nonnegative reaction rate coefficients, and the
corresponding integer variables ensure the finding of the realization with the minimal
or maximal number of reactions. The mass-action kinetics is expressed in the form
of linear constraints adjoining the optimization problem. More complex realization
problems can also be solved using the proposed framework by modifying the objective
function and/or the constraints appropriately.

Keywords Reaction kinetic systems · Mass action kinetics · Mixed integer linear
programming

1 Introduction

Reaction kinetic systems form a special class of positive systems with smooth non-
linearities where advantageous dynamic properties, such as global stability may be
ensured thanks to the special structure of the system model. In the classical case,
these systems are described by a set of ordinary differential equations (ODEs) with
polynomial right-hand sides [11]. Beside the description of classical chemical reac-
tions, reaction kinetic systems are the main building blocks of highly interconnected
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biochemical systems with complex behavior such as metabolic or cell signalling path-
ways [35].

One of the most significant results in the study of the dynamical properties of chem-
ical reaction systems is described in [15,16], where (among other important results)
the global stability of so-called ‘deficiency zero’ reaction networks is proved with a
given Lyapunov function. It is important to remark that the deficiency zero property is
a structural feature of a certain class of reaction networks, therefore their stability does
not depend on the system parameters. These concepts were revisited, extended and
put into a control theoretic framework in [34]. Conditions for the local controllability
and observability of chemical systems were given in [12] and [13], respectively. The
relationship between the chemical network structure and the possibility of multiple
equilibria is investigated in [5] from and algebraic and in [6,8] from a graph-theoretic
point of view. It was shown in [28] that reversible mass-action reaction networks with
linearly independent reaction pairs possess a local dissipative-Hamiltonian structure
in a neighborhood of any equilibrium point.

Several authors studied the possibilities of dimension reduction for large chemi-
cal networks. In [14], the characterization of nonnegative linear lumping schemes is
given that preserves the kinetic structure of the original system. The method of invari-
ant manifold (MIM) is proposed in [19] and [20] for the reduced description of kinetic
equations.

The so-called inverse problem of reaction kinetics (i.e. the characterization of those
polynomial differential equations which are kinetic) was solved in [23]. It is known
from the “fundamental dogma of chemical kinetics” that different reaction networks
can produce the same kinetic differential equations [33]. Naturally, this property has
an important impact on the identifiability of reaction rate constants [7].

Mixed integer optimization techniques have been widely and successfully used in
the field of process analysis and synthesis [18,29,30]. Other application fields include
Clar number calculation in chemistry [22,32], vehicle routing, airline crew sched-
uling, production planning, etc. The techniques for transforming propositional logic
into linear inequalities with integer and continuous variables have been worked out
in e.g. [4,30,36]. Based on this theoretical background, [31] presents a modelling
framework for discrete optimization problems that relies on a logic representation
in which mixed-integer logic is represented through disjunctions, and integer logic
through propositions. Furthermore, [3] proposes a framework for modeling and con-
trolling models of dynamical systems described by interacting physical laws, logical
rules, and operating constraints.

The aim of this paper is to propose a numerical procedure for determining equiv-
alent representations (i.e. reaction networks with possibly different structure and/or
reaction rate coefficients from the original one but still leading to the same kinetic
differential equations) called realizations of a given set of reaction kinetic differen-
tial equations with the minimal and maximal possible number of reactions. Chemical
reactions are understood in a wide generalized sense in the paper (like, e.g. in [15]
or [16]), because the constraints of (component) mass conservation are not taken into
account.

The structure of the paper is the following. Section 2 contains the most important
definitions and tools in the field of reaction networks and mixed integer linear pro-
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gramming used later in the paper. The main contribution can be found in Sect. 3 where
the realization problem is solved using the MILP framework. Illustrative examples
showing the operation of the method are presented in Sect. 4. Finally, Sect. 5 contains
the most important conclusions.

2 Basic notions

2.1 Mass action reaction networks

The original physical picture underlying the reaction kinetic system class is a closed
system under isothermal and isobaric conditions, where chemical species Xi ,

i = 1, . . . , n take part in r chemical reactions. The system is perfectly stirred, i.e.
concentrated parameter in the simplest case. The concentrations xi , i = 1, . . . , n
form the state vector the elements of which are nonnegative by nature. For the sake of
simplicity, physico-chemical properties of the system are assumed to be constant.

The origin of mass action law lies in the molecular collision picture of chemi-
cal reactions. Here the reaction occurs when either two reactant molecules collide,
or a reactant molecule collides with an inactive (e.g. solvent) molecule. Clearly, the
probability of having a reaction is proportional to the probability of collisions, that is
proportional to the concentration of the reactant(s).

2.1.1 Chemical reactions obeying the mass action law

A straightforward generalization of the above molecular collision picture is when we
allow to have multi-molecule collisions to obtain elementary reaction steps in the
following form [21]:

n∑

i=1

αi j Xi →
n∑

i=1

βi j Xi , j = 1, . . . , r (1)

where αi j is the so-called stoichiometric coefficient of component Xi in the j th reac-
tion, i.e. the number of colliding Xi molecules, and βi� is the stoichiometric coef-
ficient of the product X�. The linear combinations of the species in Eq. 1, namely∑n

i=1 αi j Xi and
∑n

i=1 βi j Xi for j = 1, . . . , r are called the complexes and are denoted
by C1,C2, . . . ,Cm . Note that the stoichiometric coefficients are always nonnegative
integers in classical reaction kinetic systems.

According to the extended molecular picture, the reaction rate of the above reactions
can be described as

ρ j = k j

n∏

i=1

[Xi ]αi j = k j

n∏

i=1

x
αi j
i , j = 1, . . . , r (2)

where [Xi ] = xi is the concentration of the component Xi , and k j > 0 is the reaction
rate constant of the j th reaction, that is always positive.
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If the reactions Ci → C j and C j → Ci take place at the same time in a reaction
network for some i, j then this pair of reactions is called a reversible reaction (but it
will be treated as two separate elementary reactions).

2.2 Graph representation of mass-action systems

Similarly to [15], we can assign the following directed graph (see, e.g. [2]) to the
reaction network (1) in a straightforward way. The directed graph D = (Vd , Ed) of
a reaction network consists of a finite nonempty set Vd of vertices and a finite set
Ed of ordered pairs of distinct vertices called directed edges. The vertices correspond
to the complexes, i.e. Vd = {C1,C2, . . .Cm}, while the directed edges represent the
reactions, i.e. (Ci ,C j ) ∈ Ed if complex Ci is transformed to C j in the reaction net-
work. The reaction rates k j for j = 1, . . . , r in (2) are assigned as positive weights
to the corresponding directed edges in the graph. A walk in the reaction graph is an
alternating sequence W = C1 E1C2 E2 . . .Ck−1 Ek−1Ck Ek where Ci ∈ Vd , Ei ∈ Ed

for i = 1, . . . , k. W is a directed path if all the vertices in it are distinct. P is called
a directed cycle if the vertices C1,C2, . . . ,Ck−1 are distinct, k ≥ 3 and C1 = Ck .
A set of complexes {C1,C2, . . . ,Ck} is a linkage class of a reaction network if the
complexes of the set are linked to each other in the reaction graph but not to any other
complex [16].

2.3 Differential equations of mass-action systems

There are several possibilities to represent the dynamic equations of mass action sys-
tems (see, e.g. [7], [15] or [20]). The most advantageous form for our purposes is the
one that is used e.g. in Lecture 4 of [15], i.e.

ẋ = Y · Ak · ψ(x) (3)

where x ∈ R
n is the concentration vector of the species, Y ∈ R

n×m stores the stoichi-
ometric composition of the complexes, Ak ∈ R

m×m contains the information corre-
sponding to the weighted directed graph of the reaction network, and ψ : R

n �→ R
m

is a monomial-type vector mapping defined by

ψ j (x) =
n∏

i=1

x
yi j
i , j = 1, . . . ,m (4)

where yi j = [Y ]i j . The exact structure of Y and Ak is the following. The i th column
of Y contains the composition of complex Ci , i.e. Y ji is the stoichiometric coefficient
of Ci corresponding to the specie X j . Ak is a column conservation matrix (i.e. the
sum of the elements in each column is zero) defined as

[Ak]i j =
{−∑m

l=1 kil , if i = j
k ji , if i �= j

(5)

123



J Math Chem (2010) 47:551–568 555

In other words, the diagonal elements [Ak]i i contain the negative sum of the weights
of the edges starting from the node Ci , while the off-diagonal elements [Ak]i j , i �= j
contain the weights of the directed edges (C j ,Ci ) coming into Ci . Based on the above
properties, it is appropriate to call Ak the Kirchhoff matrix of a reaction network.

To handle the exchange of materials between the environment and the reaction
network, the so-called “zero-complex” can be introduced and used which is a special
complex with the all stoichiometric coefficients zero i.e., it is represented by a zero
vector in the Y matrix (for the details, see, e.g. [5] or [15]).

We can associate an n-dimensional vector with each reaction in the following way.
For the reaction Ci → C j , the corresponding reaction vector denoted by ek is given by

ek = [Y ]·, j − [Y ]·,i (6)

where [Y ]·,i denotes the i th column of Y . Any convention can be used for the num-
bering of the reaction vectors (e.g. the indices i and j in (6) can be treated as digits in
a decimal system). The rank of a reaction network denoted by s is defined as the rank
of the vector set {e1, e2 . . . , er } where r is the number of reactions. The deficiency δ
of a reaction network is defined as [15,16]

δ = m − l − s (7)

where m is the number of complexes in the network, l is the number of linkage classes
and s is the rank of the reaction network. The deficiency is a very useful tool for
studying the dynamical properties of reaction networks and for establishing parame-
ter-independent global stability conditions [16,17].

A reaction network is called reversible, if each of its reactions is a reversible reac-
tion. A reaction network is called weakly reversible, if each complex in the reaction
graph lies on at least one directed cycle (i.e. if complex C j is reachable from complex
Ci on a directed path in the reaction graph, then Ci is reachable from C j on a directed
path).

Using the notation

M = Y · Ak, (8)

Equation 3 can be written in the compact form

ẋ = M · ψ(x) (9)

Example 2.1 Consider the reaction network the graph of which is shown in Fig. 1 with
the parameters:

k1 = 1, k2 = 1.1, k3 = 1, k4 = 1, k5 = 1.1, k6 = 0.1, k7 = 3, k8 = 1

Let us number the complexes as

C1 = X1 + X2, C2 = X1 + 2X2, C3 = 2X2, C4 = 2X1 + 3X2
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Fig. 1 Simple reaction network
of Example 2.1

Then the matrices of the description (3) are the following:

Y =
[

1 1 0 2
1 2 2 3

]
(10)

Ak =

⎡

⎢⎢⎣

−2 1.1 0 0
1 −2.3 3 1
1 0.1 −3 1
0 1.1 0 −2

⎤

⎥⎥⎦ (11)

M = Y Ak =
[−1 1 3 −3

2 0 0 −2

]
(12)

2.4 Mixed integer linear programming (MILP) and propositional calculus

A mixed integer linear program is the maximization or minimization of a linear func-
tion subject to linear constraints. A mixed integer linear program with k variables
(denoted by y ∈ R

k) and p constraints can be written as [27]:

minimize cT y

subject to:

A1 y = b1

A2 y ≤ b2 (13)

li ≤ yi ≤ ui for i = 1, . . . , k

y j is integer for j ∈ I, I ⊆ {1, . . . , k}

where c ∈ R
k , A1 ∈ R

p1×k , A2 ∈ R
p2×k , and p1 + p2 = p.

If all the variables can be real, then (13) is a simple linear programming problem that
can be solved in polynomial time. However, if any of the variables is integer, then the
problem becomes NP-hard. In spite of this, there exist a number of free (e.g. YALMIP
[25] or the GNU Linear Programming Kit [26]) and commercial (such as CPLEX or
TOMLAB [24]) solvers that can efficiently handle many practical problems.

As it has been mentioned in Sect. 1, literals in propositional calculus can be trans-
formed into linear inequalities. The notations of the following summary are mostly
from [3]. A statement, such as x ≤ 0 that can have a truth value of “T” (true) or “F”
false is called a literal and will be denoted by Si . In Boolean algebra, literals can be
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Table 1 Truth table

S1 S2 ∼S1 S1 ∨ S2 S1 ∧ S2 S1 → S2 S1 ↔ S2 S1 ⊕ S2

T T F T T T T F

T F F T F F F T

F T T T F T F T

F F T F F T T F

Table 2 Equivalent compound
statements and linear
equalities/inequalities

Compound statement Equivalent linear
equality/inequality

S1 ∨ S2 δ1 + δ2 ≥ 1

S1 ∧ S2 δ1 = 1, δ2 = 1

∼S1 δ1 = 0

S1 → S2 δ1 − δ2 ≤ 0

S1 ↔ S2 δ1 − δ2 = 0

S1 ⊕ S2 δ1 + δ2 = 1

combined into compound statements using the following connectives: “∧” (and), “∨”
(or), “∼” (not), “→” (implies), “↔” (if and only if), “⊕” (exclusive or). The truth
table for the previously listed connectives is given in Table 1.

A propositional logic problem, where a statement S1 must be proved to be true
given a set of compound statements containing literals S1, . . . , Sn , can be solved by
means of a linear integer program. For this, logical variables denoted by δi (δi ∈ {0, 1})
must be associated with the literals Si . Then the original compound statements can be
translated to linear inequalities involving the logical variables δi . A list of equivalent
compound statements and linear equalities or inequalities taken from [36] is shown
in Table 2. In our case, the δi logical variables will be used for indicating whether the
corresponding computed reaction rate coefficients are different from zero or not.

3 Computing dense and sparse realizations of reaction networks

Consider the polynomial system (9). We will call the matrix M in (9) admissible, if
the polynomial differential equations describe a mass-action reaction network. Con-
ditions for this were first given in [23] but not through the properties of M . The matrix
pair (Y, Ak) is called a realization of an admissible matrix M if Y · Ak = M , the
elements of Y are nonnegative integers, and Ak is a column conservation matrix with
nonpositive diagonal and nonnegative off-diagonal elements. This way, we can define
the alternative realizations of a reaction network, since M is computable from the
structure and parameters of a given reaction system.

The starting point for the forthcoming calculations is that a reaction network is given
with its reaction graph or equivalently with its realization (Y, Ak) and we want to com-
pute its sparsest or densest realization denoted by (Y s, As

k) and (Y d , Ad
k ), respectively.
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Furthermore, we make the restriction that the complexes in the newly found realiza-
tions form a subset of the original complexes, i.e. col(Y s) ⊆ col(Y ) and col(Y d) ⊆
col(Y ). In principle, the alternative realizations may contain such complexes that do
not appear in the original reaction network, but we will not elaborate on this case. It
is assumed that a maximal possible set of complexes for the reaction network is given
in advance. We remark, that obviously, the sparsest or densest realization may not be
unique (parametrically and/or structurally), but here our goal is to find one possible
solution.

3.1 Representation of mass action kinetics as linear equality constraints

For the computations, let us represent the Kirchhoff matrix of a reaction network
containing m complexes as

Ak =

⎡

⎢⎢⎢⎣

−a11 a12 . . . a1m

a21 −a22 . . . a2m
...

...

am1 am2 . . . −amm

⎤

⎥⎥⎥⎦ (14)

Keeping in mind the properties of Ak , the negative sign in (14) for the diagonal ele-
ments aii for i = 1, . . . ,m will allow us to set a uniform nonnegativity (or identically
tractable lower and upper bound) constraint for all ai j in the later computations.

Let us denote the i th row and i th column of a matrix W by [W ]i,· and [W ]·,i ,
respectively. Using (14), the individual linear equations of the matrix Eq. 8 can be
written as

− y11a11 + y12a21 + · · · + y1mam1 = [M]11 (15)
...

−yn1a11 + yn2a21 + · · · + ynmam1 = [M]n1 (16)

y11a12 − y12a22 + · · · + y1mam2 = [M]12 (17)
...

yn1a12 − yn2a22 + · · · + ynmam2 = [M]n2 (18)
...

y11a1m + y12a2m + · · · − y1mamm = [M]1m (19)
...

yn1a1m + yn2a2m + · · · − ynmamm = [M]nm (20)
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The property that Ak is a column conservation matrix can also be expressed in the
form of linear equations:

− a11 + a21 + a31 + a41 = 0 (21)

a12 − a22 + a32 + a42 = 0 (22)
...

a1m + a2m + · · · − amm = 0 (23)

Equations 15–23 can be written in the following more compact form:

⎡

⎢⎢⎢⎣

Ȳ 1 0 0 . . . 0
0 Ȳ 2 0 . . . 0
...

0 0 0 . . . Ȳ m

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

[Ak]·,1
[Ak]·,2
...

[Ak]·,m

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

[
M̄

]
·,1[

M̄
]
·,2
...[

M̄
]
·,m

⎤

⎥⎥⎥⎥⎦
(24)

where the zeros denote zero matrix blocks of size (n + 1)× m and

Ȳ i =
[

[Y ]·,1 [Y ]·,2 . . . [Y ]·,i−1 − [Y ]·,i [Y ]·,i+1 . . . [Y ]·,m
1 1 . . . 1 −1 1 . . . 1

]
∈ R

(n+1)×m, (25)

M̄ =
[

M
0 . . . 0

]
∈ R

(n+1)×m (26)

3.2 Constructing the optimization problem

It is visible from (24) that the optimization variable will contain the reaction rate coef-
ficients, i.e. the elements of Ak as the matrix Y is known and fixed by the problem
statement. For the sake of simplicity, let us use the notation

z =

⎡

⎢⎢⎢⎣

z(1)

z(2)

...

z(m)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

[Ak]·,1
[Ak]·,2
...

[Ak]·,m

⎤

⎥⎥⎥⎦ (27)

where obviously, z(i) ∈ R
m , i = 1, . . . ,m.

When we seek the sparsest realization of the original reaction network (Ak,Y ) then
we are searching for the sparsest solution of (24), i.e. the one containing the maximal
number of zeros (or the minimal number of zeros, if the densest realization is to be
computed). For this, let us associate logical variables δ(i)j with the continuous variables

z(i)j for i, j = 1, . . . ,m. Then the optimization variable previously denoted by y is

y =
[

z
δ

]
. (28)
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Following from the problem statement and construction, the lower bound for the
continuous variables is zero. For the solvability of the MILP problem, also an upper
bound is introduced for z, i.e.

0 ≤ zi ≤ ui , ui > 0, i = 1, . . . ,m2 (29)

To minimize (or maximize) the number of nonzeros in the continuous solution part
z, the following compound statement have to be translated to linear inequalities

δi = 1 ↔ zi > 0, i = 1, . . . ,m2 (30)

To be able to numerically distinguish between practically zero and nonzero solutions,
(30) is modified to

δi = 1 ↔ zi > ε, i = 1, . . . ,m2 (31)

where 0 < ε  1 (i.e. solutions below ε are treated as zero). Taking into consideration
(29), the linear inequalities corresponding to (31) are

0 ≤ zi − εδi , i = 1, . . . ,m2 (32)

0 ≤ −zi + uiδi , i = 1, . . . ,m2 (33)

Now, the MILP problem for finding the sparsest realization can be constructed as

minimize
2m2∑

m2+1
yi (34)

subject to:
⎡

⎢⎢⎢⎣

Ȳ 1 0 0 . . . 0
0 Ȳ 2 0 . . . 0
...

0 0 0 . . . Ȳ m

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

y1
y2
...

ym2

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

[
M̄

]
·,1[

M̄
]
·,2
...[

M̄
]
·,m

⎤

⎥⎥⎥⎥⎦
(35)

0 ≤ yi ≤ ui for i = 1, . . . ,m2 (36)

0 ≤ yi − εyi+m2 , i = 1, . . . ,m2 (37)

0 ≤ −yi + ui yi+m2 , i = 1, . . . ,m2 (38)

y j is integer for j = m2 + 1, . . . , 2m2 (39)

In the case when the densest realization is searched for, the optimization task (34)
is simply changed to

minimize

⎛

⎝−
2m2∑

m2+1

yi

⎞

⎠ (40)
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Remark 1 By setting the lower and upper bounds for yi differently from what is given
in (36), the presence or omission of certain reactions can be forced during the optimi-
zation.

Remark 2 The block-diagonal structure of the coefficient matrix in (35) and the inde-
pendence of the inequalities (36–38) allow us to partition the optimization variable y
to m partitions and thus to solve the m resulting MILP subproblems paralelly which
is a significant advantage from a computational point of view [1].

Remark 3 The block-diagonal structure mentioned in the previous remark makes it
possible to combine different objective functions for different source complexes (since
column i of Ak contains the rate coefficients corresponding to the reactions starting
from complex Ci ). E.g., the number of reactions starting from certain complexes can
be minimized while it can be maximized for other complexes.

Remark 4 We note that the sparsest solution of certain sets of underdetermined linear
equations can be obtained in polynomial time using linear programming (LP) [9,10].
However, the applicability conditions of this LP solution are not fulfilled for many
reaction networks.

4 Examples

The following examples were computed using the MILP solver of the YALMIP tool-
box [25] under the MATLAB® computational environment.

Example 4.1 Consider again the simple reaction network of Example 2.1. Using the
method described in Sect. 3, the densest and sparsest realizations are shown in Figs. 2
and 3, respectively. The Kirchhoff-matrix of the sparsest realization is

As
k =

⎡

⎢⎢⎣

−2 1 0 0
1 −2 3 1
1 0 −3 1
0 1 0 −2

⎤

⎥⎥⎦ , (41)

while the densest realization is characterized by

Fig. 2 Densest realization of the reaction network of Example 2.1
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Fig. 3 Sparsest realization of
the reaction network of
Example 2.1

Ad
k =

⎡

⎢⎢⎣

−1.7 1.1 0.966 0.3
0.1 −2.3 0.1 0.1
1.3 0.1 −2.033 1.3
0.3 1.1 0.966 −1.7

⎤

⎥⎥⎦ , (42)

Furthermore Y s = Y d = Y . It is easy to check that Y s · As
k = Y d · Ad

k = M . The
deficiency of all three networks is 1, since m = 4, l = 1 and s = 2 in every case.
Furthermore, each realization has the weak reversibility property.

Example 4.2 In this example, the starting point is the reaction network described in
[7] as Fig. 6 in Sect. 6. The network is replotted in Fig. 4. For the sake of simplicity,
let us choose all the reaction rate coefficients to be 1 in the network. The Y and Ak

matrices of the original reaction system are

Y =

⎡

⎢⎢⎣

0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 2 1
0 0 1 0 0 0 1 2 1 0 0
0 0 0 1 0 2 1 0 0 0 1

⎤

⎥⎥⎦ , (43)

Fig. 4 Reaction network of
Example 4.2. All the rate
coefficients are set to 1
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Ak =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 1 1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 −7 1 0 1 0 1 0
0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

The first column of zeros in Y denotes the zero complex.
Here, only the sparsest realization is computed. The structure and parameters of

the sparsest realization are shown in Fig. 5. The Kirchhoff matrix of the network is

As
k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 1 1 1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 −7 1 0 1 0 1 0
0 0 0 0 0 −1 0 0 0 0 0
1 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

Fig. 5 Sparsest realization of
the reaction network of
Example 4.2
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The coefficient matrix of the differential equations is given by

M = Y Ak = Y As
k =

⎡

⎢⎢⎣

1 0 0 0 −7 1 0 1 0 1 0
1 −1 0 0 4 0 0 0 0 −2 0
1 0 −1 0 4 0 0 −2 0 0 0
1 0 0 −1 4 −2 0 0 0 0 0

⎤

⎥⎥⎦ (46)

It is visible that the sparse realization contains 12 reactions. Two complexes from
the original 11, namely X1 + X3 and X1 + X2 can be left out of the network since
the corresponding columns and rows in As

k contain zeroes. It is easy to compute that
the deficiencies of the orignal structure in Fig. 4 and that of the sparsest realization in
Fig. 5 are δ1 = 6 (m1 = 11, l1 = 1, s1 = 4) and δ2 = 4 (m2 = 9, l2 = 1, s2 = 4),
respectively. It is interesting to compare that the equivalent simplified realization on
the right hand side of Fig. 6 in [7] contains 8 complexes, but 14 reactions and has a
deficiency of 3. This shows the expectable fact that the minimization of the number
of reactions does not necessarily result in a realization that has the lowest deficiency.
However, the sparsest realization has the minimal number of parameters (i.e. reaction
rate coefficients).

Example 4.3 Figure 6 shows a simple reaction network with two linkage classes. Let
the reaction rate coefficients be 1 for each reaction again. The deficiency of the network
is 4 (m = 8, l = 2, s = 2). The Y and Ak matrices of the network are

Y =
[

1 0 1 3 2 1 0 1
0 1 1 1 1 2 3 3

]
(47)

Fig. 6 Reaction network of
Example 4.3. All the rate
coefficients are chosen to be 1

123



J Math Chem (2010) 47:551–568 565

Ak =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0
1 −2 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 −3 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

Both the sparsest and densest realization have been computed for this network. Figure 7
shows the sparsest realization containing only 6 complexes and 4 reactions with the
Kirchhoff matrix

As
k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0
1 −1.33 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1.33 0 0 0 0 0 0
0 0 0 0 −2.5 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1.5 0 0 0
0 0 0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

The deficiency of the sparse realization is 2 (m = 6, l = 2, s = 2).
The computed dense realization is depicted in Fig. 8. It is visible that in contrast

to the previous two cases, the densest realization consists of only one linkage class.
Since most elements of Ak are 0.1 (see Eq. 50), only those reaction rates are indicated
in the figure that are different from this value. In this case, the number of complexes
is 8, the number of reactions is 29 and the Kirchhoff matrix is given by

Fig. 7 Sparsest realization of
the reaction network of
Example 4.3
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Fig. 8 Densest realization of the reaction network of Example 4.3. Only those reaction rate coefficients
are indicated that are different from 0.1

Ad
k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0.5 0.5 0 0.1 0.1 0 0
1 −2 0.2 0 0.1 0.1 0 0
0 0.1 −1.2 0 0.1 0.1 0 0
0 1 0.1 0 0.1 0.1 0 0
0 0.1 0.1 0 −3 0.1 0 0
0 0.1 0.1 0 0.1 −1.1 0 0
0 0.1 0.1 0 1.1 0.2 0 0
0 0.1 0.1 0 1.4 0.4 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

The deficiency of the dense realization is 5 (m = 8, l = 1, s = 2). It is again
straightforward to check that

M = Y Ak = Y As
k = Y Ad

k =
[−1 4 0 0 −4 0 0 0

1 0 0 0 5 0 0 0

]
(51)

5 Conclusions

An optimization-based method has been proposed in this paper for the computation of
sparse and dense realizations of reaction networks obeying the mass-action law. Start-
ing from an appropriate form (3) of the kinetic equations, the mass-action kinetics can
be expressed as linear constraints with a block-diagonal structure. The computation
of the densest and sparsest realizations is traced back to a MILP problem where the
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optimization variables are the reaction rate coefficients and the corresponding integer
auxiliary variables.

The proposed method can be used e.g. for finding the “most identifiable” param-
etrization of a complex reaction network (i.e. the one that has the minimal number
of rate coefficients as parameters to be estimated). In the author’s opinion, the pre-
sented examples raise interesting problems worth further studying, especially about
which important properties of reaction networks can be determined directly from their
differential equations.
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